Natural Geometry of Nonzero Quaternions

Vladimir Trifonov¹

Received May 22, 2006; accepted July 4, 2006 Published Online: January 17, 2007

It is shown that the group of nonzero quaternions carries a family of natural closed Friedmann-Lemaître-Robertson-Walker metrics.

KEY WORDS: closed FLRW metric; Lie group of nonzero quaternions.

1. INTRODUCTION

The quaternion algebra \mathbb{H} is one of the most important and well-studies objects in mathematics (e.g. Widdows, 2002 and references therein) and physics (e.g. Adler, 1995 and references therein). It has a natural Hermitian form which induces a Euclidean scalar product on its additive vector space $S_{\mathbb{H}}$. There is also a family of natural indefinite scalar products of signature 2 on $S_{\mathbb{H}}$ (Trifonov, 1995), induced by the structure tensor H of the quaternion algebra. This result came out of a study of relationship between natural metric properties of *unital* algebras and internal logic of topoi they generate. It was shown in Trifonov (1995) that if the logic of a topos is bivalent Boolean then the generating algebra is isomorphic to the quaternion algebra with a family of natural scalar product of signature 2. Such scalar products can be defined on any linear algebra over a field \mathbb{F} . In this note we show that for a unital algebra these scalar products can be naturally extended over the Lie group of its invertible elements, producing a family of *principal metrics*. In particular, for the quaternion algebra, these metrics are closed Friedmann-Lemaître-Robertson-Walker.

Remark 1.1. Some of the notations and definitions are slightly nonstandard. We use the $\begin{bmatrix} m \\ n \end{bmatrix}$ device to denote tensor ranks; for example a one-form is a $\begin{bmatrix} 0 \\ 1 \end{bmatrix}$ -tensor. For clarity of the exposition we use \Box at the end of a *Proof*.

¹ American Mathematical Society, P.O. Box 7621, Cumberland, RI 02864, USA e-mail: trifonov@member.ams.org.

Definition 1.1. An \mathbb{F} -algebra, A, is an ordered pair (S_A, A) , where S_A is a vector space over a field \mathbb{F} , and A is a $[\frac{1}{2}]$ -tensor on S_A , called the *structure tensor* of A. Each vector a of S_A is called an *element* of A, denoted $a \in A$. The *dimensionality* of A is that of S_A .

Remark 1.2. This is an unconventional definition of a linear algebra over \mathbb{F} . Indeed, the tensor A induces a binary operation $S_A \times S_A \to S_A$, called the *multiplication* of A: to each pair of vectors (a, b) the tensor A associates a vector $ab : S_A^* \to \mathbb{F}$, such that $(ab)(\tilde{\tau}) = A(\tilde{\tau}, a, b), \forall \tilde{\tau} \in S_A^*$. An \mathbb{F} -algebra with an associative multiplication is called *associative*. An element ι , such that $a\iota = \iota a = a, \forall a \in A$ is called an *identity* of A.

Definition 1.3. For an \mathbb{F} -algebra A and each nonzero one-form $\tilde{\tau} \in S_A^*$, the tensor $A[\tilde{\tau}] := \tilde{\tau} \bullet A$ is called a *principal scalar product* on A, just in case it is symmetric, where \bullet denotes contraction on the first index.

Definition 1.4. For each \mathbb{F} -algebra $A = (S_A, A)$, an \mathbb{F} -algebra $[A] = (S_A, [A])$, with the structure tensor defined by

$$[A](\tilde{\boldsymbol{\tau}}, \boldsymbol{a}, \boldsymbol{b}) := A(\tilde{\boldsymbol{\tau}}, \boldsymbol{a}, \boldsymbol{b}) - A(\tilde{\boldsymbol{\tau}}, \boldsymbol{b}, \boldsymbol{a}), \forall \tilde{\boldsymbol{\tau}} \in S_A^*, \boldsymbol{a}, \boldsymbol{b} \in S_A,$$

is called the *commutator* algebra of A.

Definition 1.5. A finite dimensional associative \mathbb{R} -algebra with an identity is called a *unital* algebra.

Lemma 1.1. The set A of all invertible elements of a unital algebra A is a Lie group with respect to the multiplication of A whose Lie algebra of A is the commutator algebra [A].

Proof: See, for example, (Postnikov, 1982) for a proof of this simple lemma. \Box

Remark 1.3. For each basis (e_j) on the vector space S_A of a unital algebra, there is a natural basis field on A, namely the basis (\hat{e}_j) of left invariant vector fields generated by (e_j) , associating to each point $a \in A$ a basis $(\hat{e}_j)(a)$ on the tangent space $T_a A$. We call (\hat{e}_j) a *proper frame generated by* (e_j) . The value of (\hat{e}_j) at ais referred to as a *proper basis* (at a) generated by (e_j) , and denoted $(\hat{e}_j)(a)$. In particular, $(\hat{e}_j)(t)$, the proper basis at the identity generated by (e_j) coincides with (e_j) . Definition 1.4. For a unital algebra A, let (\hat{e}_j) be a proper frame on A, generated by a basis (e_j) on S_A . The *structure field* of the Lie group A is a tensor field Aon A, assigning to each point $a \in A$ a $\begin{bmatrix} 1 \\ 2 \end{bmatrix}$ -tensor A(a) on $T_a A$, with components $A_{ik}^i(a)$ in the basis $(\hat{e}_j)(a)$, defined by

$$\mathcal{A}^{i}_{ik}(\boldsymbol{a}) := A^{i}_{ik}, \quad \forall \boldsymbol{a} \in \mathcal{A},$$

where A_{ik}^{i} are the components of the structure tensor **A** in the basis (e_{j}).

Definition 1.5. For a unital algebra A and each $a \in A$, an \mathbb{F} -algebra $\mathcal{A}(a) = (T_a \mathcal{A}, \mathcal{A}(a))$ is called the *tangent algebra* of the Lie group \mathcal{A} at a.

Remark 1.6. It is easy to see that for each $a \in A$, the tangent algebra A(a) is isomorphic to A; in particular, each A(a) is unital.

Definition 1.7. For a unital algebra A and a twice differentiable real function \mathcal{T} on the Lie group \mathcal{A} , a principal metric on \mathcal{A} is a $\begin{bmatrix} 0\\2 \end{bmatrix}$ -tensor field $\mathcal{T} := d\mathcal{T} \bullet \mathcal{A}$, where $d\mathcal{T}$ is the gradient of \mathcal{T} , such that $\mathcal{T}(a)$ is a principal scalar product on $\mathcal{A}(a), \forall a \in \mathcal{A}$.

2. QUATERNION ALGEBRA

Definition 2.1. A four dimensional \mathbb{R} -algebra, $\mathbb{H} = (S_{\mathbb{H}}, H)$, is called a *quaternion algebra* (with *quaternions* as its elements), if there is a basis on $S_{\mathbb{H}}$, in which the components of the structure tensor H are given by the entries of the following matrices,

$$H_{\alpha\beta}^{0} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & -1 \end{pmatrix}, \quad H_{\alpha\beta}^{1} = \begin{pmatrix} 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & -1 & 0 \end{pmatrix}, \quad (1)$$
$$H_{\alpha\beta}^{2} = \begin{pmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & -1 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{pmatrix}, \quad H_{\alpha\beta}^{3} = \begin{pmatrix} 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & -1 & 0 & 0 \\ 1 & 0 & 0 & 0 \end{pmatrix}.$$

We refer to such a basis as *canonical*.

Remark 2.1. The vectors of the canonical basis are denoted 1, i, j, k. A quaternion algebra is unital, with the first vector of the canonical basis, 1, as its identity. Since (1, i, j, k) is a basis on a real vector space, any quaternion a can be presented

as $a^0\mathbf{1} + a^1\mathbf{i} + a^2\mathbf{j} + a^3\mathbf{k}$, $a^\beta \in \mathbb{R}$. A quaternion $\bar{\mathbf{a}} = a^0\mathbf{1} - a^1\mathbf{i} - a^2\mathbf{j} - a^3\mathbf{k}$ is called *conjugate* to \mathbf{a} . We refer to a^0 and $a^p\mathbf{i}_p$ as the *real* and *imaginary part* of \mathbf{a} , respectively. Quaternions of the form $a^0\mathbf{1}$ are in one-to-one correspondence with real numbers, which is often denoted, with certain notational abuse, as $\mathbb{R} \subset \mathbb{H}$.

Remark 2.2. A linear transformation $S_{\mathbb{H}} \to S_{\mathbb{H}}$ with the following components in the canonical basis,

$$\begin{pmatrix} 1 & 0 \\ 0 & \mathsf{B} \end{pmatrix}, \quad \mathsf{B} \in SO(3),$$

takes (1, i, j, k) to a basis (i_{β}) in which the components (1) of the structure tensor will *not* change, and neither will the multiplicative behavior of vectors of (i_{β}) . Thus, we have a class of canonical bases parameterized by elements of SO(3).

Theorem 2.1. Every principal scalar product on \mathbb{H} is of signature 2.

Proof: For the quaternion algebra the components of the structure tensor H in a canonical basis are given by (1).

A one-form $\tilde{\tau}$ on $S_{\mathbb{H}}$ with components $\tilde{\tau}_{\beta}$ in (the dual of) a canonical basis (i_{β}) contracts with the structure tensor into a $\begin{bmatrix} 0\\2 \end{bmatrix}$ -tensor on $S_{\mathbb{H}}$ with the following components in the basis (i_{β}) :

$$\begin{pmatrix} \tilde{\tau}_0 & \tilde{\tau}_1 & \tilde{\tau}_2 & \tilde{\tau}_3 \\ \tilde{\tau}_1 & -\tilde{\tau}_0 & \tilde{\tau}_3 & -\tilde{\tau}_2 \\ \tilde{\tau}_2 & -\tilde{\tau}_3 & -\tilde{\tau}_0 & \tilde{\tau}_1 \\ \tilde{\tau}_3 & \tilde{\tau}_2 & -\tilde{\tau}_1 & -\tilde{\tau}_0 \end{pmatrix}.$$

The only way to make this symmetric is to put $\tilde{\tau}_1 = -\tilde{\tau}_1, \tilde{\tau}_2 = -\tilde{\tau}_2, \tilde{\tau}_3 = -\tilde{\tau}_3$, which yields $\tilde{\tau}_1 = \tilde{\tau}_2 = \tilde{\tau}_3 = 0$:

$$H[\tilde{\boldsymbol{\tau}}]_{\alpha\beta} = \begin{pmatrix} \tilde{\tau}_0 & 0 & 0 & 0\\ 0 & -\tilde{\tau}_0 & 0 & 0\\ 0 & 0 & -\tilde{\tau}_0 & 0\\ 0 & 0 & 0 & -\tilde{\tau}_0 \end{pmatrix}.$$
 (2)

3. NATURAL STRUCTURES ON $\mathcal H$

There is a class of canonical bases on $S_{\mathbb{H}}$ (see Remark 2.2.) whose members differ from one another by a rotation in the hyperplane of pure imaginary quaternions. Each canonical basis (i_{β}) induces a *canonical* coordinate system (w, x, y, z)on $S_{\mathbb{H}}$, considered as a (linear) manifold, and therefore also on its submanifold \mathcal{H}

Natural Geometry of Nonzero Quaternions

of nonzero quaternions: a quaternion $\mathbf{a} = a^{\beta} \mathbf{i}_{\beta}$ is assigned coordinates ($w = a^{0}$, $x = a^{1}$, $y = a^{2}$, $z = a^{3}$). This coordinate system covers both $S_{\mathbb{H}}$ and \mathcal{H} with a single patch. Since $\mathbf{0} \notin \mathcal{H}$, at least one of the coordinates is always nonzero for any point $\mathbf{a} \in \mathcal{H}$. For a differentiable function $R : \mathbb{R} \to \mathbb{R} \setminus \{0\}$ there is a system of natural spherical coordinates (η, χ, θ, ϕ) on \mathcal{H} , related to the canonical coordinates by

$$w = R(\eta)\cos(\chi), \qquad x = R(\eta)\sin(\chi)\sin(\theta)\cos(\phi),$$

$$y = R(\eta)\sin(\chi)\sin(\theta)\sin(\phi), \qquad z = R(\eta)\sin(\chi)\cos(\theta).$$

Each canonical basis (i_{β}) can be considered a basis on the vector space of the Lie algebra of \mathcal{H} , i. e., the tangent space $T_1\mathcal{H} \cong S_{\mathbb{H}}$ to \mathcal{H} at the point (1, 0, 0, 0), the identity of the group \mathcal{H} . There are several natural basis fields on \mathcal{H} induced by each basis (i_{β}) . First of all, there are two coordinate basis fields, the *canonical* frame, $(\partial_w, \partial_x, \partial_y, \partial_z)$ and the corresponding spherical frame $(\partial_\eta, \partial_\chi, \partial_\theta, \partial_{\phi})$. We also have a noncoordinate basis field, the proper frame (\hat{i}_{β}) , of left invariant vector fields on \mathcal{H} , induced by the canonical basis. For each frame (f_{β}) on \mathcal{H} , its value at a, i.e., a basis on $T_a\mathcal{H}$, is denoted $(f_{\beta})(a)$. A left invariant vector field \hat{u} on \mathcal{H} , generated by a vector $u \in S_{\mathbb{H}}$ with components (u^{β}) in a canonical basis, associates to each point $a \in \mathcal{H}$ with coordinates (w, x, y, z) a vector $\hat{u}(a) \in T_a\mathcal{H}$ with the components $\hat{u}^{\beta}(a) = (au)^{\beta}$ in the basis $(\partial_w, \partial_x, \partial_y, \partial_z)(a)$ on $T_a\mathcal{H}$:

$$\hat{u}^{0}(\boldsymbol{a}) = wu^{0} - xu^{1} - yu^{2} - zu^{3}, \qquad \hat{u}^{1}(\boldsymbol{a}) = wu^{1} + xu^{0} + yu^{3} - zu^{2},$$
$$\hat{u}^{2}(\boldsymbol{a}) = wu^{2} - xu^{3} + yu^{0} + zu^{1}, \qquad \hat{u}^{3}(\boldsymbol{a}) = wu^{3} + xu^{2} - yu^{1} + zu^{0}.$$
(3)

The system (3) contains sufficient information to compute transformation between the frames. For example, the transformation between the spherical and proper frames is given by

$$\begin{pmatrix} R/\dot{R} & 0 & 0 & 0 \\ 0 & \sin\theta\cos\phi & \sin\theta\sin\phi & \cos\theta \\ 0 & \frac{\cos\chi\cos\theta\cos\phi+\sin\chi\sin\phi}{\sin\chi} & \frac{\cos\chi\cos\theta\sin\phi+\sin\chi\cos\phi}{\sin\chi} & \frac{\cos\chi\cos\theta\sin\phi+\sin\chi\cos\phi}{\sin\chi} \\ 0 & \frac{\sin\chi\cos\theta\cos\phi-\cos\chi\sin\phi}{\sin\chi\sin\theta} & \frac{\sin\chi\cos\theta\sin\phi+\cos\chi\cos\phi}{\sin\chi\sin\theta} & -1 \end{pmatrix},$$

where $\dot{R} := \frac{dR}{d\eta} : \mathbb{R} \to \mathbb{R} \setminus \{0\}.$

Definition 3.1. A Lorentzian metric on a four dimensional manifold is called *closed FLRW* (Friedmann-Lemaître-Robertson-Walker) if there is a coordinate system $(\eta, \chi, \theta, \phi)$, such that in the corresponding coordinate frame the

components of the metric are given by the entries of the following matrix:

$$\pm \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & -a^2 & 0 & 0 \\ 0 & 0 & -a^2 \sin^2(\chi) & 0 \\ 0 & 0 & 0 & -a^2 \sin^2(\chi) \sin^2(\theta) \end{pmatrix},$$

where $a : \mathbb{R} \to \mathbb{R}$, referred to as the *scale factor*, is a function of η only.

4. PRINCIPAL METRICS ON H

Theorem 4.1. Every principal metric of \mathbb{H} is closed FLRW.

Proof: Let $\tilde{\tau}$ and (i_{β}) be a one-form and a canonical basis on $S_{\mathbb{H}}$, respectively. For each point $a \in \mathcal{H}$ the \mathbb{R} -algebra $\mathcal{H}(a) := (T_a \mathcal{H}, \mathcal{H}(a))$ is the tangent algebra, at a, of the Lie group \mathcal{H} . For each $a \in \mathcal{H}$ the components of the structure tensor $\mathcal{H}(a)$ and a principal scalar product, $\mathcal{H}[\tilde{\tau}]$ of $\mathcal{H}(a)$ in the basis $(\hat{\iota}_{\beta})(a)$ are given by (1) and (2), respectively. Therefore, the components of a principal metric, \mathcal{T} , in the proper frame $(\hat{\iota}_{\beta})$ must have the form

$$\begin{pmatrix} \tilde{\tau} & 0 & 0 & 0\\ 0 & -\tilde{\tau} & 0 & 0\\ 0 & 0 & -\tilde{\tau} & 0\\ 0 & 0 & 0 & -\tilde{\tau} \end{pmatrix},$$
(4)

for some function $\tilde{\tau} : \mathcal{H} \to \mathbb{R} \setminus \{0\}$. In other words, any principal metric on \mathcal{H} is obtained by contraction of a one-form field $\tilde{\tau}$, whose components in $(\hat{\iota}_{\beta})$ are $(\tilde{\tau}, 0, 0, 0)$, with the structure field \mathcal{H} . This one-form is exact, i.e., there exists a twice differentiable function \mathcal{T} , such that $d\mathcal{T} = \tilde{\tau}$. In the spherical frame with $R(\eta) = \exp(\eta)$ the components of $\tilde{\tau}$ are also $(\tilde{\tau}, 0, 0, 0)$, and,

$$d\mathcal{T}_0 = \frac{\partial \mathcal{T}}{\partial \eta} = \tilde{\tau}, \quad d\mathcal{T}_1 = \frac{\partial \mathcal{T}}{\partial \chi} = d\mathcal{T}_2 = \frac{\partial \mathcal{T}}{\partial \theta} = d\mathcal{T}_3 = \frac{\partial \mathcal{T}}{\partial \phi} = 0.$$
 (5)

It follows from (5) that both \mathcal{T} and $\tilde{\tau}$ depend on η only. Since $\frac{\partial \mathcal{T}}{\partial \eta}$ is differentiable, $\tilde{\tau}$ must be at least continuous. Therefore $\tilde{\tau}$ cannot change sign, because $\tilde{\tau}(\eta) \neq 0, \forall \eta \in \mathbb{R}$. Computing the components of the principal metric \mathcal{T} in the spherical frame we get

$$\mathcal{T}_{\alpha\beta} = \begin{pmatrix} \tilde{\tau}(\eta)(\frac{R}{R})^2 & 0 & 0 & 0 \\ 0 & -\tilde{\tau}(\eta) & 0 & 0 \\ 0 & 0 & -\tilde{\tau}(\eta)\mathrm{sin}^2(\chi) & 0 \\ 0 & 0 & 0 & -\tilde{\tau}(\eta)\mathrm{sin}^2(\chi)\mathrm{sin}^2(\theta) \end{pmatrix}.$$

If $\tilde{\tau}(\eta) > 0$, we take $R(\eta)$ such that $\tilde{\tau}(\eta)(\frac{\dot{R}}{R})^2 = 1$, which yields

$$R(\eta) = \exp \int \frac{d\eta}{\pm \sqrt{\tilde{\tau}(\eta)}}.$$
(6)

In other words, with $R(\eta)$ satisfying (6), the components of the principal metric in the spherical frame are

$$\mathcal{T}_{\alpha\beta} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & -\mathsf{a}^2 & 0 & 0 \\ 0 & 0 & -\mathsf{a}^2 \mathrm{sin}^2(\chi) & 0 \\ 0 & 0 & 0 & -\mathsf{a}^2 \mathrm{sin}^2(\chi) \mathrm{sin}^2(\theta) \end{pmatrix},$$

where the scale factor $a(\eta) := \sqrt{\tilde{\tau}(\eta)}$.

If $\tau(\eta) < 0$, similar considerations show that the metric is also closed FLRW with the scale factor $a(\eta) := \sqrt{-\tilde{\tau}(\eta)}$.

Corollary 4.1. T is a monotonous function of η for each principal metric T of H.

Thus the natural geometry of the group of nonzero quaternions \mathcal{H} is defined by a family of closed Friedmann-Lemaître-Robertson-Walker metrics.

REFERENCES

- 1. Adler, S. L. (1995). *Quaternionic Quantum Mechanics and Quantum Fields*, Oxford University Press, Oxford, UK.
- 2. Постников, М. М. (1982). Группы и алгебры Ли, Наука, Москва.
- 3. Trifonov, V. (1995). Europhysics Letters, 32(8), 621-626.
- Widdows, D. (2002). Quaternionic Algebraic Geometry, PhD Thesis, St Annes's College, Oxford, UK.