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Natural Geometry of Nonzero Quaternions
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It is shown that the group of nonzero quaternions carries a family of natural closed
Friedmann-Lemaı̂tre-Robertson-Walker metrics.
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1. INTRODUCTION

The quaternion algebra H is one of the most important and well-studies
objects in mathematics (e.g. Widdows, 2002 and references therein) and physics
(e.g. Adler, 1995 and references therein). It has a natural Hermitian form which
induces a Euclidean scalar product on its additive vector space SH. There is also
a family of natural indefinite scalar products of signature 2 on SH (Trifonov,
1995), induced by the structure tensor H of the quaternion algebra. This result
came out of a study of relationship between natural metric properties of unital
algebras and internal logic of topoi they generate. It was shown in Trifonov (1995)
that if the logic of a topos is bivalent Boolean then the generating algebra is
isomorphic to the quaternion algebra with a family of natural scalar product of
signature 2. Such scalar products can be defined on any linear algebra over a
field F. In this note we show that for a unital algebra these scalar products can
be naturally extended over the Lie group of its invertible elements, producing a
family of principal metrics. In particular, for the quaternion algebra, these metrics
are closed Friedmann-Lemaı̂tre-Robertson-Walker.

Remark 1.1. Some of the notations and definitions are slightly nonstandard. We

use the [ m
n

] device to denote tensor ranks; for example a one-form is a [ 0
1 ]-tensor.

For clarity of the exposition we use � at the end of a Proof.
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Definition 1.1. An F-algebra, A, is an ordered pair (SA, A), where SA is a vector

space over a field F, and A is a [ 1
2 ]-tensor on SA, called the structure tensor of A.

Each vector a of SA is called an element of A, denoted a ∈ A. The dimensionality
of A is that of SA.

Remark 1.2. This is an unconventional definition of a linear algebra over F.
Indeed, the tensor A induces a binary operation SA × SA → SA, called the mul-
tiplication of A: to each pair of vectors (a, b) the tensor A associates a vec-
tor ab : S∗

A → F, such that (ab)(τ̃ ) = A(τ̃ , a, b),∀τ̃ ∈ S∗
A. An F-algebra with

an associative multiplication is called associative. An element ı, such that
aı = ıa = a,∀a ∈ A is called an identity of A.

Definition 1.3. For an F-algebra A and each nonzero one-form τ̃ ∈ S∗
A, the

tensor A[τ̃ ] := τ̃ • A is called a principal scalar product on A, just in case it is
symmetric, where • denotes contraction on the first index.

Definition 1.4. For each F-algebra A = (SA, A), an F-algebra [A] = (SA, [A]),
with the structure tensor defined by

[A](τ̃ , a, b) := A(τ̃ , a, b) − A(τ̃ , b, a),∀τ̃ ∈ S∗
A, a, b ∈ SA,

is called the commutator algebra of A.

Definition 1.5. A finite dimensional associative R-algebra with an identity is
called a unital algebra.

Lemma 1.1. The set A of all invertible elements of a unital algebra A is a
Lie group with respect to the multiplication of A whose Lie algebra of A is the
commutator algebra [A].

Proof: See, for example, (Postnikov, 1982) for a proof of this simple
lemma. �

Remark 1.3. For each basis (ej ) on the vector space SA of a unital algebra, there
is a natural basis field on A, namely the basis (êj ) of left invariant vector fields
generated by (ej ), associating to each point a ∈ A a basis (êj )(a) on the tangent
space TaA. We call (êj ) a proper frame generated by (ej ). The value of (êj ) at a
is referred to as a proper basis (at a) generated by (ej ), and denoted (êj )(a). In
particular, (êj )(ı), the proper basis at the identity generated by (ej ) coincides with
(ej ).
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Definition 1.4. For a unital algebra A, let (êj ) be a proper frame on A, generated
by a basis (ej ) on SA. The structure field of the Lie group A is a tensor field A

on A, assigning to each point a ∈ A a [ 1
2 ]-tensor A(a) on TaA, with components

Ai
jk(a) in the basis (êj )(a), defined by

Ai
jk(a) := Ai

jk, ∀a ∈ A,

where Ai
jk are the components of the structure tensor A in the basis (ej ).

Definition 1.5. For a unital algebra A and each a ∈ A, an F-algebra A(a) =
(TaA,A(a)) is called the tangent algebra of the Lie group A at a.

Remark 1.6. It is easy to see that for each a ∈ A, the tangent algebra A(a) is
isomorphic to A; in particular, each A(a) is unital.

Definition 1.7. For a unital algebra A and a twice differentiable real function T
on the Lie group A, a principal metric on A is a [ 0

2 ]-tensor field T := dT • A,

where dT is the gradient of T , such that T (a) is a principal scalar product on
A(a),∀a ∈ A.

2. QUATERNION ALGEBRA

Definition 2.1. A four dimensional R-algebra, H = (SH, H), is called a quater-
nion algebra (with quaternions as its elements), if there is a basis on SH, in which
the components of the structure tensor H are given by the entries of the following
matrices,

H 0
αβ =

⎛
⎜⎜⎝

1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

⎞
⎟⎟⎠ , H 1

αβ =

⎛
⎜⎜⎝

0 1 0 0
1 0 0 0
0 0 0 1
0 0 −1 0

⎞
⎟⎟⎠ , (1)

H 2
αβ =

⎛
⎜⎜⎝

0 0 1 0
0 0 0 −1
1 0 0 0
0 1 0 0

⎞
⎟⎟⎠ , H 3

αβ =

⎛
⎜⎜⎝

0 0 0 1
0 0 1 0
0 −1 0 0
1 0 0 0

⎞
⎟⎟⎠ .

We refer to such a basis as canonical.

Remark 2.1. The vectors of the canonical basis are denoted 1, i , j , k. A quater-
nion algebra is unital, with the first vector of the canonical basis, 1, as its identity.
Since (1, i , j , k) is a basis on a real vector space, any quaternion a can be presented
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as a01 + a1 i + a2 j + a3k, aβ ∈ R. A quaternion ā = a01 − a1 i − a2 j − a3k is
called conjugate to a. We refer to a0 and ap ip as the real and imaginary part of a,
respectively. Quaternions of the form a01 are in one-to-one correspondence with
real numbers, which is often denoted, with certain notational abuse, as R ⊂ H.

Remark 2.2. A linear transformation SH → SH with the following components
in the canonical basis,

(
1 0
0 B

)
, B ∈ SO(3),

takes (1, i , j , k) to a basis (iβ) in which the components (1) of the structure tensor
will not change, and neither will the multiplicative behavior of vectors of (iβ).
Thus, we have a class of canonical bases parameterized by elements of SO(3).

Theorem 2.1. Every principal scalar product on H is of signature 2.

Proof: For the quaternion algebra the components of the structure tensor H in
a canonical basis are given by (1).

A one-form τ̃ on SH with components τ̃β in (the dual of) a canonical basis

(iβ) contracts with the structure tensor into a [ 0
2 ]-tensor on SH with the following

components in the basis (iβ):
⎛
⎜⎜⎝

τ̃0 τ̃1 τ̃2 τ̃3

τ̃1 −τ̃0 τ̃3 −τ̃2

τ̃2 −τ̃3 −τ̃0 τ̃1

τ̃3 τ̃2 −τ̃1 −τ̃0

⎞
⎟⎟⎠ .

The only way to make this symmetric is to put τ̃1 = −τ̃1, τ̃2 = −τ̃2, τ̃3 = −τ̃3,
which yields τ̃1 = τ̃2 = τ̃3 = 0:

H [τ̃ ]αβ =

⎛
⎜⎜⎝

τ̃0 0 0 0
0 −τ̃0 0 0
0 0 −τ̃0 0
0 0 0 −τ̃0

⎞
⎟⎟⎠ . (2)

�

3. NATURAL STRUCTURES ON H
There is a class of canonical bases on SH (see Remark 2.2.) whose members

differ from one another by a rotation in the hyperplane of pure imaginary quater-
nions. Each canonical basis (iβ) induces a canonical coordinate system (w, x, y, z)
on SH, considered as a (linear) manifold, and therefore also on its submanifold H
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of nonzero quaternions: a quaternion a = aβ iβ is assigned coordinates (w = a0,
x = a1, y = a2, z = a3). This coordinate system covers both SH and H with a
single patch. Since 0 /∈ H, at least one of the coordinates is always nonzero for any
point a ∈ H. For a differentiable function R : R → R \ {0} there is a system of
natural spherical coordinates (η, χ , θ , φ) onH, related to the canonical coordinates
by

w = R(η) cos(χ ), x = R(η) sin(χ ) sin(θ ) cos(φ),

y = R(η) sin(χ ) sin(θ ) sin(φ), z = R(η) sin(χ ) cos(θ ).

Each canonical basis (iβ) can be considered a basis on the vector space of
the Lie algebra of H, i. e., the tangent space T1H ∼= SH to H at the point (1, 0, 0,
0), the identity of the group H. There are several natural basis fields on H induced
by each basis (iβ). First of all, there are two coordinate basis fields, the canonical
frame, (∂w, ∂x , ∂y , ∂z) and the corresponding spherical frame (∂η, ∂χ , ∂θ , ∂φ).
We also have a noncoordinate basis field, the proper frame (ı̂β), of left invariant
vector fields on H, induced by the canonical basis. For each frame ( f β) on H, its
value at a, i.e., a basis on TaH, is denoted ( f β)(a). A left invariant vector field û
on H, generated by a vector u ∈ SH with components (uβ) in a canonical basis,
associates to each point a ∈ H with coordinates (w, x, y, z) a vector û(a) ∈ TaH
with the components ûβ(a) = (au)β in the basis (∂w, ∂x , ∂y , ∂z) (a) on TaH:

û0(a) = wu0 − xu1 − yu2 − zu3, û1(a) = wu1 + xu0 + yu3 − zu2,

û2(a) = wu2 − xu3 + yu0 + zu1, û3(a) = wu3 + xu2 − yu1 + zu0. (3)

The system (3) contains sufficient information to compute transformation
between the frames. For example, the transformation between the spherical and
proper frames is given by

⎛
⎜⎜⎝

R/Ṙ 0 0 0
0 sin θ cos φ sin θ sin φ cos θ

0 cos χ cos θ cos φ+sin χ sin φ

sin χ

cos χ cos θ sin φ+sin χ cos φ

sin χ

cos χ sin θ

sin χ

0 sin χ cos θ cos φ−cos χ sin φ

sin χ sin θ

sin χ cos θ sin φ+cos χ cos φ

sin χ sin θ
−1

⎞
⎟⎟⎠ ,

where Ṙ := dR
dη

: R → R \ {0}.

Definition 3.1. A Lorentzian metric on a four dimensional manifold is called
closed FLRW (Friedmann-Lemaı̂tre-Robertson-Walker) if there is a coordi-
nate system (η, χ, θ, φ), such that in the corresponding coordinate frame the
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components of the metric are given by the entries of the following matrix:

±

⎛
⎜⎜⎝

1 0 0 0
0 −a2 0 0
0 0 −a2sin2(χ ) 0
0 0 0 −a2sin2(χ )sin2(θ )

⎞
⎟⎟⎠ ,

where a : R → R, referred to as the scale factor, is a function of η only.

4. PRINCIPAL METRICS ON H

Theorem 4.1. Every principal metric of H is closed FLRW.

Proof: Let τ̃ and (iβ) be a one-form and a canonical basis on SH, respectively.
For each point a ∈ H the R-algebra H(a) := (TaH,H(a)) is the tangent algebra,
at a, of the Lie group H. For each a ∈ H the components of the structure tensor
H(a) and a principal scalar product, H[τ̃ ] of H(a) in the basis (ı̂β)(a) are given
by (1) and (2), respectively. Therefore, the components of a principal metric, T ,
in the proper frame (ı̂β) must have the form

⎛
⎜⎜⎝

τ̃ 0 0 0
0 −τ̃ 0 0
0 0 −τ̃ 0
0 0 0 −τ̃

⎞
⎟⎟⎠ , (4)

for some function τ̃ : H → R \ {0}. In other words, any principal metric on H
is obtained by contraction of a one-form field τ̃ , whose components in (ı̂β) are
(τ̃ , 0, 0, 0), with the structure field H. This one-form is exact, i.e., there exists
a twice differentiable function T , such that dT = τ̃ . In the spherical frame with
R(η) = exp(η) the components of τ̃ are also (τ̃ , 0, 0, 0), and,

dT0 = ∂T
∂η

= τ̃ , dT1 = ∂T
∂χ

= dT2 = ∂T
∂θ

= dT3 = ∂T
∂φ

= 0. (5)

It follows from (5) that both T and τ̃ depend on η only. Since ∂T
∂η

is differentiable,
τ̃ must be at least continuous. Therefore τ̃ cannot change sign, because τ̃ (η) �=
0,∀η ∈ R. Computing the components of the principal metric T in the spherical
frame we get

Tαβ =

⎛
⎜⎜⎝

τ̃ (η)( Ṙ
R

)2 0 0 0
0 −τ̃ (η) 0 0
0 0 −τ̃ (η)sin2(χ ) 0
0 0 0 −τ̃ (η)sin2(χ )sin2(θ )

⎞
⎟⎟⎠ .
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If τ̃ (η) > 0, we take R(η) such that τ̃ (η)( Ṙ
R

)2 = 1, which yields

R(η) = exp
∫

dη

±√
τ̃ (η)

. (6)

In other words, with R(η) satisfying (6), the components of the principal metric
in the spherical frame are

Tαβ =

⎛
⎜⎜⎝

1 0 0 0
0 −a2 0 0
0 0 −a2sin2(χ ) 0
0 0 0 −a2sin2(χ )sin2(θ )

⎞
⎟⎟⎠ ,

where the scale factor a(η) := √
τ̃ (η).

If τ (η) < 0, similar considerations show that the metric is also closed FLRW
with the scale factor a(η) := √−τ̃ (η). �

Corollary 4.1. T is a monotonous function of η for each principal metric T of
H.

Thus the natural geometry of the group of nonzero quaternions H is defined
by a family of closed Friedmann-Lemaı̂tre-Robertson-Walker metrics.
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