Natural Geometry of Nonzero Quaternions

Vladimir Trifonov¹

Received May 22, 2006; accepted July 4, 2006 Published Online: January 17, 2007

It is shown that the group of nonzero quaternions carries a family of natural closed Friedmann-Lemaître-Robertson-Walker metrics.

KEY WORDS: closed FLRW metric; Lie group of nonzero quaternions.

1. INTRODUCTION

The quaternion algebra $\mathbb H$ is one of the most important and well-studies objects in mathematics (e.g. Widdows, 2002 and references therein) and physics (e.g. Adler, 1995 and references therein). It has a natural Hermitian form which induces a Euclidean scalar product on its additive vector space $S_{\mathbb{H}}$. There is also a family of natural indefinite scalar products of signature 2 on $S_{\mathbb{H}}$ (Trifonov, 1995), induced by the structure tensor H of the quaternion algebra. This result came out of a study of relationship between natural metric properties of *unital* algebras and internal logic of topoi they generate. It was shown in Trifonov (1995) that if the logic of a topos is bivalent Boolean then the generating algebra is isomorphic to the quaternion algebra with a family of natural scalar product of signature 2. Such scalar products can be defined on any linear algebra over a field $\mathbb F$. In this note we show that for a unital algebra these scalar products can be naturally extended over the Lie group of its invertible elements, producing a family of *principal metrics*. In particular, for the quaternion algebra, these metrics are closed Friedmann-Lemaître-Robertson-Walker.

Remark 1.1. Some of the notations and definitions are slightly nonstandard. We use the $\lceil \frac{m}{n} \rceil$ device to denote tensor ranks; for example a one-form is a $\lceil \frac{0}{1} \rceil$ -tensor. For clarity of the exposition we use \Box at the end of a *Proof*.

¹ American Mathematical Society, P.O. Box 7621, Cumberland, RI 02864, USA e-mail: trifonov@member.ams.org.

Definition 1.1. An $\mathbb{F}-algebra$, A, is an ordered pair (S_A, A) , where S_A is a vector space over a field \mathbb{F} , and *A* is a $\left[\frac{1}{2}\right]$ -tensor on *S_A*, called the *structure tensor* of *A*. Each vector **a** of S_A is called an *element* of A, denoted $a \in A$. The *dimensionality* of *A* is that of *SA*.

Remark 1.2. This is an unconventional definition of a linear algebra over F. Indeed, the tensor A induces a binary operation $S_A \times S_A \rightarrow S_A$, called the *multiplication* of *A*: to each pair of vectors (a, b) the tensor *A* associates a vector $ab: S_A^* \to \mathbb{F}$, such that $(ab)(\tilde{\tau}) = A(\tilde{\tau}, a, b)$, $\forall \tilde{\tau} \in S_A^*$. An F-algebra with an associative multiplication is called *associative*. An element *ı*, such that $a\iota = \iota a = a$, $\forall a \in A$ is called an *identity* of *A*.

Definition 1.3. For an F-algebra *A* and each nonzero one-form $\tilde{\tau} \in S_A^*$, the tensor $A[\tilde{\tau}] := \tilde{\tau} \cdot A$ is called a *principal scalar product* on A, just in case it is symmetric, where \bullet denotes contraction on the first index.

Definition 1.4. For each $\mathbb{F}\text{-algebra } A = (S_A, A)$, an $\mathbb{F}\text{-algebra } [A] = (S_A, [A])$, with the structure tensor defined by

$$
[A](\tilde{\tau},a,b) := A(\tilde{\tau},a,b) - A(\tilde{\tau},b,a), \forall \tilde{\tau} \in S_A^*, a,b \in S_A,
$$

is called the *commutator* algebra of *A*.

Definition 1.5. A finite dimensional associative R-algebra with an identity is called a *unital* algebra.

Lemma 1.1. *The set* A *of all invertible elements of a unital algebra A is a Lie group with respect to the multiplication of A whose Lie algebra of* A *is the commutator algebra* [*A*]*.*

Proof: See, for example, (Postnikov, 1982) for a proof of this simple lemma.

Remark 1.3. For each basis (e_i) on the vector space S_A of a unital algebra, there is a natural basis field on A, namely the basis (\hat{e}_i) of left invariant vector fields generated by (e_i) , associating to each point $a \in A$ a basis $(\hat{e}_i)(a)$ on the tangent space T_a A. We call (\hat{e}_i) a *proper frame generated by* (e_i) . The value of (\hat{e}_i) at *a* is referred to as a *proper basis* (at *a*) generated by (e_i) , and denoted $(\hat{e}_i)(a)$. In particular, $(\hat{e}_i)(i)$, the proper basis at the identity generated by (e_i) coincides with (e_i) .

Definition 1.4. For a unital algebra A, let (\hat{e}_i) be a proper frame on A, generated by a basis (e_i) on S_A . The *structure field* of the Lie group A is a tensor field A on A, assigning to each point $a \in A$ a $\left[\frac{1}{2}\right]$ -tensor $A(a)$ on T_aA , with components $A^i_{jk}(\boldsymbol{a})$ in the basis $(\hat{\boldsymbol{e}}_j)(\boldsymbol{a})$, defined by

$$
\mathcal{A}_{jk}^i(\boldsymbol{a}) := A_{jk}^i, \quad \forall \boldsymbol{a} \in \mathcal{A},
$$

where A^i_{jk} are the components of the structure tensor *A* in the basis (e_j) .

Definition 1.5. For a unital algebra *A* and each $a \in A$, an F-algebra $A(a)$ = $(T_a\mathcal{A}, \mathcal{A}(a))$ is called the *tangent algebra* of the Lie group \mathcal{A} at a .

Remark 1.6. It is easy to see that for each $a \in A$, the tangent algebra $A(a)$ is isomorphic to A ; in particular, each $A(a)$ is unital.

Definition 1.7. For a unital algebra *A* and a twice differentiable real function T on the Lie group A, a *principal metric on* A is a $\binom{0}{2}$ -tensor field $\mathcal{T} := d\mathcal{T} \bullet \mathcal{A}$, where dT is the gradient of T, such that $T(a)$ is a principal scalar product on $\mathcal{A}(\boldsymbol{a}), \forall \boldsymbol{a} \in \mathcal{A}.$

2. QUATERNION ALGEBRA

Definition 2.1. A four dimensional \mathbb{R} -algebra, $\mathbb{H} = (S_{\mathbb{H}}, H)$, is called a *quaternion algebra* (with *quaternions* as its elements), if there is a basis on $S_{\mathbb{H}}$, in which the components of the structure tensor H are given by the entries of the following matrices,

$$
H_{\alpha\beta}^{0} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & -1 \end{pmatrix}, \quad H_{\alpha\beta}^{1} = \begin{pmatrix} 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & -1 & 0 \end{pmatrix}, \quad (1)
$$

$$
H_{\alpha\beta}^{2} = \begin{pmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & -1 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{pmatrix}, \quad H_{\alpha\beta}^{3} = \begin{pmatrix} 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & -1 & 0 & 0 \\ 1 & 0 & 0 & 0 \end{pmatrix}.
$$

We refer to such a basis as *canonical*.

Remark 2.1. The vectors of the canonical basis are denoted **1**, *i*, *j*, *k*. A quaternion algebra is unital, with the first vector of the canonical basis, **1**, as its identity. Since (**1**, *i*, *j*, *k*) is a basis on a real vector space, any quaternion *a* can be presented

 $a^0 \mathbf{1} + a^1 \mathbf{i} + a^2 \mathbf{j} + a^3 \mathbf{k}, a^{\beta} \in \mathbb{R}$. A quaternion $\bar{a} = a^0 \mathbf{1} - a^1 \mathbf{i} - a^2 \mathbf{j} - a^3 \mathbf{k}$ is called *conjugate* to \boldsymbol{a} . We refer to a^0 and a^p *i* $_p$ as the *real* and *imaginary part* of \boldsymbol{a} , respectively. Quaternions of the form a^0 **1** are in one-to-one correspondence with real numbers, which is often denoted, with certain notational abuse, as $\mathbb{R} \subset \mathbb{H}$.

Remark 2.2. A linear transformation $S_{\mathbb{H}} \to S_{\mathbb{H}}$ with the following components in the canonical basis,

$$
\begin{pmatrix} 1 & 0 \\ 0 & B \end{pmatrix}, \quad B \in SO(3),
$$

takes $(1, i, j, k)$ to a basis (i_β) in which the components (1) of the structure tensor will *not* change, and neither will the multiplicative behavior of vectors of (*iβ*). Thus, we have a class of canonical bases parameterized by elements of *SO*(3).

Theorem 2.1. *Every principal scalar product on* \mathbb{H} *is of signature* 2*.*

Proof: For the quaternion algebra the components of the structure tensor *H* in a canonical basis are given by (1).

A one-form $\tilde{\tau}$ on $S_{\mathbb{H}}$ with components $\tilde{\tau}_{\beta}$ in (the dual of) a canonical basis (i_{β}) contracts with the structure tensor into a $\begin{bmatrix} 0 \\ 2 \end{bmatrix}$ -tensor on $S_{\mathbb{H}}$ with the following components in the basis (i_{β}) :

$$
\begin{pmatrix} \tilde{\tau}_0 & \tilde{\tau}_1 & \tilde{\tau}_2 & \tilde{\tau}_3 \\ \tilde{\tau}_1 & -\tilde{\tau}_0 & \tilde{\tau}_3 & -\tilde{\tau}_2 \\ \tilde{\tau}_2 & -\tilde{\tau}_3 & -\tilde{\tau}_0 & \tilde{\tau}_1 \\ \tilde{\tau}_3 & \tilde{\tau}_2 & -\tilde{\tau}_1 & -\tilde{\tau}_0 \end{pmatrix}.
$$

The only way to make this symmetric is to put $\tilde{\tau}_1 = -\tilde{\tau}_1, \tilde{\tau}_2 = -\tilde{\tau}_2, \tilde{\tau}_3 = -\tilde{\tau}_3$, which yields $\tilde{\tau}_1 = \tilde{\tau}_2 = \tilde{\tau}_3 = 0$:

$$
H[\tilde{\boldsymbol{\tau}}]_{\alpha\beta} = \begin{pmatrix} \tilde{\tau}_0 & 0 & 0 & 0 \\ 0 & -\tilde{\tau}_0 & 0 & 0 \\ 0 & 0 & -\tilde{\tau}_0 & 0 \\ 0 & 0 & 0 & -\tilde{\tau}_0 \end{pmatrix}.
$$
 (2)

 \Box

3. NATURAL STRUCTURES ON *H*

There is a class of canonical bases on $S_{\mathbb{H}}$ (see Remark 2.2.) whose members differ from one another by a rotation in the hyperplane of pure imaginary quaternions. Each canonical basis (*iβ*) induces a *canonical* coordinate system (*w*, *x*, *y*, *z*) on $S_{\mathbb{H}}$, considered as a (linear) manifold, and therefore also on its submanifold $\mathcal H$ of nonzero quaternions: a quaternion $\mathbf{a} = a^{\beta} \mathbf{i}_{\beta}$ is assigned coordinates ($w = a^0$, $x = a^1$, $y = a^2$, $z = a^3$). This coordinate system covers both $S_{\mathbb{H}}$ and H with a single patch. Since $0 \notin H$, at least one of the coordinates is always nonzero for any point $a \in \mathcal{H}$. For a differentiable function $R : \mathbb{R} \to \mathbb{R} \setminus \{0\}$ there is a system of natural spherical coordinates $(\eta, \chi, \theta, \phi)$ on H , related to the canonical coordinates by

$$
w = R(\eta)\cos(\chi), \qquad x = R(\eta)\sin(\chi)\sin(\theta)\cos(\phi),
$$

$$
y = R(\eta)\sin(\chi)\sin(\theta)\sin(\phi), \qquad z = R(\eta)\sin(\chi)\cos(\theta).
$$

Each canonical basis (i_β) can be considered a basis on the vector space of the Lie algebra of H , i. e., the tangent space $T_1H \cong S_H$ to H at the point (1, 0, 0, 0), the identity of the group H . There are several natural basis fields on H induced by each basis (*i^β*). First of all, there are two coordinate basis fields, the *canonical frame*, $(\partial_w, \partial_x, \partial_y, \partial_z)$ and the corresponding *spherical frame* $(\partial_n, \partial_x, \partial_\theta, \partial_\phi)$. We also have a noncoordinate basis field, the *proper frame* $(\hat{\imath}_{\beta})$, of left invariant vector fields on H, induced by the canonical basis. For each frame (f_β) on H, its value at *a*, i.e., a basis on T_aH , is denoted $(f_\beta)(a)$. A left invariant vector field \hat{u} on H, generated by a vector $u \in S_{\mathbb{H}}$ with components (u^{β}) in a canonical basis, associates to each point $a \in \mathcal{H}$ with coordinates (w, x, y, z) a vector $\hat{u}(a) \in T_a \mathcal{H}$ with the components $\hat{u}^{\beta}(\mathbf{a}) = (\mathbf{a}u)^{\beta}$ in the basis $(\partial_w, \partial_x, \partial_y, \partial_z)$ (*a*) on $T_{\mathbf{a}}\mathcal{H}$:

$$
\hat{u}^0(\mathbf{a}) = w u^0 - x u^1 - y u^2 - z u^3, \qquad \hat{u}^1(\mathbf{a}) = w u^1 + x u^0 + y u^3 - z u^2,
$$

$$
\hat{u}^2(\mathbf{a}) = w u^2 - x u^3 + y u^0 + z u^1, \qquad \hat{u}^3(\mathbf{a}) = w u^3 + x u^2 - y u^1 + z u^0.
$$
 (3)

The system (3) contains sufficient information to compute transformation between the frames. For example, the transformation between the spherical and proper frames is given by

$$
\begin{pmatrix}\nR/\dot{R} & 0 & 0 & 0 \\
0 & \sin\theta\cos\phi & \sin\theta\sin\phi & \cos\theta \\
0 & \frac{\cos\chi\cos\theta\cos\phi + \sin\chi\sin\phi}{\sin\chi\cos\theta\cos\phi - \cos\chi\sin\phi} & \frac{\cos\chi\cos\theta\sin\phi + \sin\chi\cos\phi}{\sin\chi\sin\theta} & \frac{\cos\chi\sin\theta}{\sin\chi\sin\theta}\n\end{pmatrix},
$$

where $\dot{R} := \frac{dR}{d\eta} : \mathbb{R} \to \mathbb{R} \setminus \{0\}.$

Definition 3.1. A Lorentzian metric on a four dimensional manifold is called *closed FLRW* (Friedmann-Lemaître-Robertson-Walker) if there is a coordinate system $(\eta, \chi, \theta, \phi)$, such that in the corresponding coordinate frame the

components of the metric are given by the entries of the following matrix:

$$
\pm \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & -a^2 & 0 & 0 \\ 0 & 0 & -a^2 \sin^2(\chi) & 0 \\ 0 & 0 & 0 & -a^2 \sin^2(\chi) \sin^2(\theta) \end{pmatrix},
$$

where $a : \mathbb{R} \to \mathbb{R}$, referred to as the *scale factor*, is a function of η only.

4. PRINCIPAL METRICS ON *H*

Theorem 4.1. *Every principal metric of* H *is closed FLRW.*

Proof: Let $\tilde{\tau}$ and (i_{β}) be a one-form and a canonical basis on $S_{\mathbb{H}}$, respectively. For each point $a \in \mathcal{H}$ the R-algebra $\mathcal{H}(a) := (T_a \mathcal{H}, \mathcal{H}(a))$ is the tangent algebra, at *a*, of the Lie group H. For each $a \in H$ the components of the structure tensor $\mathcal{H}(a)$ and a principal scalar product, $\mathcal{H}[\tilde{\tau}]$ of $\mathcal{H}(a)$ in the basis $(\hat{\iota}_{\beta})(a)$ are given by (1) and (2), respectively. Therefore, the components of a principal metric, τ , in the proper frame $(\hat{\imath}_\beta)$ must have the form

$$
\begin{pmatrix}\n\tilde{\tau} & 0 & 0 & 0 \\
0 & -\tilde{\tau} & 0 & 0 \\
0 & 0 & -\tilde{\tau} & 0 \\
0 & 0 & 0 & -\tilde{\tau}\n\end{pmatrix},\n\tag{4}
$$

for some function $\tilde{\tau}$: $\mathcal{H} \to \mathbb{R} \setminus \{0\}$. In other words, any principal metric on \mathcal{H} is obtained by contraction of a one-form field $\tilde{\tau}$, whose components in $(\hat{\imath}_{\beta})$ are $(\tilde{\tau}, 0, 0, 0)$, with the structure field \mathcal{H} . This one-form is exact, i.e., there exists a twice differentiable function T, such that $dT = \tilde{\tau}$. In the spherical frame with $R(\eta) = \exp(\eta)$ the components of $\tilde{\tau}$ are also ($\tilde{\tau}$, 0, 0, 0), and,

$$
d\mathcal{T}_0 = \frac{\partial \mathcal{T}}{\partial \eta} = \tilde{\tau}, \quad d\mathcal{T}_1 = \frac{\partial \mathcal{T}}{\partial \chi} = d\mathcal{T}_2 = \frac{\partial \mathcal{T}}{\partial \theta} = d\mathcal{T}_3 = \frac{\partial \mathcal{T}}{\partial \phi} = 0.
$$
 (5)

It follows from (5) that both T and $\tilde{\tau}$ depend on η only. Since $\frac{\partial \mathcal{T}}{\partial \eta}$ is differentiable, $\tilde{\tau}$ must be at least continuous. Therefore $\tilde{\tau}$ cannot change sign, because $\tilde{\tau}(\eta) \neq$ $0, \forall \eta \in \mathbb{R}$. Computing the components of the principal metric \mathcal{T} in the spherical frame we get

$$
\mathcal{T}_{\alpha\beta} = \begin{pmatrix} \tilde{\tau}(\eta)(\frac{\dot{R}}{R})^2 & 0 & 0 & 0 \\ 0 & -\tilde{\tau}(\eta) & 0 & 0 \\ 0 & 0 & -\tilde{\tau}(\eta)\sin^2(\chi) & 0 \\ 0 & 0 & 0 & -\tilde{\tau}(\eta)\sin^2(\chi)\sin^2(\theta) \end{pmatrix}.
$$

If $\tilde{\tau}(\eta) > 0$, we take $R(\eta)$ such that $\tilde{\tau}(\eta)(\frac{\dot{R}}{R})^2 = 1$, which yields

$$
R(\eta) = \exp \int \frac{d\eta}{\pm \sqrt{\tilde{\tau}(\eta)}}.
$$
 (6)

In other words, with $R(\eta)$ satisfying (6), the components of the principal metric in the spherical frame are

$$
\mathcal{T}_{\alpha\beta} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & -a^2 & 0 & 0 \\ 0 & 0 & -a^2 \sin^2(\chi) & 0 \\ 0 & 0 & 0 & -a^2 \sin^2(\chi) \sin^2(\theta) \end{pmatrix},
$$

where the scale factor $a(\eta) := \sqrt{\tilde{\tau}(\eta)}$.

If $\tau(\eta) < 0$, similar considerations show that the metric is also closed FLRW with the scale factor $a(\eta) := \sqrt{-\tilde{\tau}(\eta)}$.

Corollary 4.1. T *is a monotonous function of η for each principal metric T of* H*.*

Thus the natural geometry of the group of nonzero quaternions H is defined by a family of closed Friedmann-Lemaître-Robertson-Walker metrics.

REFERENCES

- 1. Adler, S. L. (1995). *Quaternionic Quantum Mechanics and Quantum Fields*, Oxford University Press, Oxford, UK.
- 2. Постников, М. М. (1982). Группы и алгебры Ли, Наука, Москва.
- 3. Trifonov, V. (1995). *Europhysics Letters*, **32**(8), 621–626.
- 4. Widdows, D. (2002). *Quaternionic Algebraic Geometry*, PhD Thesis, St Annes's College, Oxford, UK.